19 double InitTemperature;
21 int AnnealingGeneration;
23 double AnnealingRatio;
26 void virtual Elitism(
const int iterationnumber);
31 void SetParams(
const double InitT,
const int AnnealG,
32 const double AnnealR);
55 #endif // CANNEALINGGA_H
The base class for the population of a genetic algorithm, implements storage and access functions...
AnnealingGA implements a genetic algorithm with an annealing style objective function.
virtual void CalcProbabilities(const int iterationnumber, gplib::rmat &LocalMisFit, GeneralPopulation &LocalPopulation)
Calculate the selection probabilities given the iterationnumber, misfit and population to store the r...
The base class for genetic algorithm propagation methods.
virtual std::vector< int > GetBestModelIndices()
Return the vector containing the best indices, here it has always one component equal to GetBestIndex...
General Transcribe base class for genetic algorithm parameter transcription.
virtual void Elitism(const int iterationnumber)
The implementation of Elitism for the AnnealingGA, in this case this function has no effect...
General genetic algorithm class.
int GetBestIndex()
The index of the best population member.
void SetParams(const double InitT, const int AnnealG, const double AnnealR)
Set the parameters for the annealing process.
std::vector< boost::shared_ptr< GeneralObjective > > tObjectiveVector
AnnealingGA(GeneralPropagation *const LocalPropagation, GeneralPopulation *const LocalPopulation, GeneralTranscribe *const LocalTranscribe, const tObjectiveVector &IndObjective, const int nthreads=1)
The constructor only passes on the parameters to GeneralGA.
unsigned virtual int GetNBestmodels()
How many best models exist in this iteration, for this GA it is always 1.